Convention Special Issue - 2019

J. Indian Chem. Soc., Vol. 96, October 2019, pp. 1279-1285

An ortho-hydroxy-arylimine based probe: Fluorescence sensitivity towards Zn²⁺ ion[†]

Sunanda Dey^a, Pallab Gayen^b and Chittaranjan Sinha^{*a}

^aDepartment of Chemistry, Jadavpur University, Kolkata-700 032, India

E-mail: crsjuchem@gmail.com

^bDepartment of Chemistry, Raja Peary Mohan College, Uttarpara-712 258, Hooghly, West Bengal, India

Manuscript received online 15 September 2019, accepted 19 September 2019

A probe 6,6'-((1Z,1'Z)-(((propane-1,3-diylbis(oxy))bis(2,1-phenylene))bis(azanylylidene))bis-(methanylylidene))bis(2ethoxyphenol) (H_2L), is synthesized by the condensation of 2,2'-(propane-1,2-diylbis(oxy))dianiline with 3-ethoxy-2-hydroxybenzaldehyde and characterized by various spectroscopic techniques (¹H NMR, FT-IR, ESI-MS etc.), exhibits greenish yellow emission (λ_{em} 556 nm) upon binding with Zn²⁺ ion in H₂O-CH₃CN (1:9 v/v, HEPES buffer, pH 7.4) in a mixture of seventeen other biologically important metal ions. The limit of detection (LOD) is 15.5 nM. The 1:1 composition of the complex, Zn²⁺: L²⁻, is supported by Job's plot, ESI-MS and ¹H NMR measurements.

Keywords: Zn²⁺ emission, turn-ON sensor, LOD 15.5 nM, fluorescent technique, 1:1 complexation.

Introduction

Uses of fluorescent probes for the trace/ultratrace detection of ions have been used widely in environmental monitoring and in biological studies due to high sensitivity, nondestructive nature and rapid response¹⁻³. For sensing of Zn^{2+} , Al^{3+} , Cu^{2+} , Fe^{3+} , Cr^{3+} , Pd^{2+} halides, sulphide (S²⁻), sulphite (SO₃^{2–}), pH etc. fluorescent chemosensor has been found to be very much effective^{4,5}. After iron, zinc is the second most abundant transition metal ion in human body and a healthy human body contains 200 to 300 mg of zinc and plays a vital role in enzyme regulation, gene expression, neural signal transmission, apoptosis, cellular metabolism etc.^{6,7}. Besides, zinc is mostly trapped inside proteins, as a structural or catalytic cofactor^{8–10}. However, excess zinc in human body has responsible for many adverse effects such as ischemic stroke, Alzheimer's disease, epilepsy, Parkinson's disease, infantile diarrhea etc.^{11–14}. In drinking water, the allowable limit of Zn is 76 µM (WHO recommended)¹⁵. Not only water but soil microbial activity in the environment also disrupted by excess zinc¹⁶. Since Zn²⁺ is a d¹⁰ configuration and is poor in spectroscopic response, hence, it is of great interest to develop a new chemosensor with high selectivity and sensitivity to Zn^{2+} ion.

Admirable detection techniques are the mass spectrometry (MS), atomic absorption spectroscopy (AAS), atomic emission spectroscopy (AES), inductively coupled plasma (ICP), electrochemical methods, fluorometry, voltammetry etc. Among this variety of methods fluorescent skills have attracted more attention^{17–20}. Schiff base, a class of chelating compounds, has been commonly used as chemical probes due to simplistic synthesis, stability in wide-ranging pH, solubility in polar and mixed-polar media as well as impressive photophysical properties^{21–24}. Herein, we report a new Schiff base, 6,6'-((1Z,1'Z)-(((propane-1,3-diylbis(oxy))bis(2,1phenylene))bis(azanylylidene))bis-(methanylylidene))bis(2ethoxyphenol) (H₂L) synthesized by condensation of 2.2'-(propane-1,2-divlbis(oxy))dianiline and 3-ethoxy-2-hydroxybenzaldehyde which exhibits recognition of Zn²⁺ ion via "OFF-ON" fluorescence mechanism. The composition of H₂L-Zn²⁺ has been supported by some spectroscopic techniques (ESI-MS, Job's plot etc.).

Experimental

Materials and methods

The reagents required for this work were collected from Sigma-Aldrich and used without further purification. Solvents

[†]Invited Lecture.

were bought from Merck. Methanol was dried by the previously reported method²⁵. The aqueous solutions were prepared using Milli-Q (Millipore) water. The metal ion solutions were prepared from their corresponding acetate/chloride or nitrate salts. ¹H NMR spectra were recorded on a Bruker (AC) 400 MHz FT-NMR spectrometer and the chemical shifts are stated in ppm with TMS as an internal standard. IR spectra were obtained using Perkin-Elmer LX-1 FTIR spectrophotometer with KBr pellets (4000–400 cm⁻¹). The mass spectra were recorded from a Water HRMS spectrometer with model number XEVO-G2QTOF#YCA351. Using Perkin-Elmer Lambda 25 spectrophotometer the UV-Vis spectra were recorded and the fluorescence spectra were obtained from Perkin-Elmer spectrofluorimeter of model LS55.

Synthesis of probe, H₂L

2,2'-(Propane-1,2-diylbis(oxy))dianiline (0.258 g, 1.0 mmol) and 3-ethoxy-2-hydroxy-benzaldehyde (0.332 g, 2.0 mmol) were stirred for 6 h in dry methanol solution. A clear orange coloured solution was obtained and orange needle crystals were isolated after slow evaporation. Yield: 77%. m.p.: 89°C. Microanalytical data: C₃₃H₃₄N₂O₆ Calcd. (Found): C, 71.46 (71.39); H, 6.18 (6.21); N, 5.05 (5.11)%; ¹H NMR (400 MHz, DMSO-*d*₆): 14.20 (s, 2H, phenolic-OH), 8.93 (s, 2H, imine-H), 6.82-7.44 (14H, aromatic-H), 4.28 (t, 4H, -CH₂-CH₂-CH₂-), 4.04 (q, 4H, -OCH₂-CH₃), 2.24 (2H, -CH₂-CH₂-CH₂-), 1.31 (t, 6H, -OCH₂-CH₃) (Fig. 1); ¹³C NMR (400 MHz, DMSO-*d*₆): 162.27, 151.85, 151.74, 147.18, 135.91, 128.10, 124.07, 120.97, 119.21, 118.93, 117.98, 116.97, 113.35, 64.89, 64.34, 28.81, 14.72 (ESI[†], Fig. S1); the mass spectral peak of H₂L was appeared at 555.27 (base peak) which corresponds to $H_2L + H^+$ ion (*m*/*z* Calcd. 555.24) and a small peak at 577.26 indicates H_2L + Na⁺ ion (*m/z* Calcd. 577.23) (ESI[†], Fig. S2); IR: 3370 cm⁻¹ (phenolic-OH), 1619 cm⁻¹ (imines C=N) (ESI[†], Fig. S3).

Preparation of [ZnL]

To 10 mL MeOH solution of H_2L (0.30 g, 1 mmol), 10 mL MeOH solution of $Zn(OAc)_2$.2H₂O (0.21 g, 1 mmol) was added and stirred for 6 h then the resulting solution was allowed to evaporate slowly in air. After few days a yellow crystalline product was obtained and processed for characterization. ¹H NMR (400 MHz, DMSO-*d*₆): 8.90 (s, 2H, imine-H), 6.71–7.38 (14H, aromatic-H), 4.22–4.37 (m, 8H, -*CH*₂-CH₂-*CH*₂-and -*OCH*₂-CH₃), 2.26 (2H, -CH₂-*CH*₂-CH₂-), 1.26 (t, 6H, -OCH₂-*CH*₃) (Fig. 1); the mass spectral peak of H₂L-Zn²⁺ complex was appeared at 617.22 which corresponds to ZnL + H⁺ ion (*m*/*z* Calcd. 617.15) and a base peak at 639.20 indicates ZnL + Na⁺ ion (*m*/*z* Calcd. 639.14) (ESI[†], Fig. S4); IR: 1612 cm⁻¹ (imines C=N) (ESI[†], Fig. S5).

General method for UV-Vis and fluorescence studies

1.0 mM stock solutions of the various metal ions were prepared by dissolving the required amount of metal salts in Millipore water. Stock solution of the probe (1.0 mM), was prepared in CH₃CN and 100 μ L of this solution was diluted using 1.9 ml CH₃CN-H₂O (v/v 9:1) containing HEPES buffer (pH 7.4), then the total volume of the solution becomes 2.0 ml and the solution concentration becomes 50 μ M. 100 μ L metal salt solutions were transferred to the probe solution. The absorption and emission spectra were recorded at room temperature and the excitation wavelength used for fluorescence study was 400 nm.

Scheme 1. Synthesis of the probe, H₂L.

[†]Electronic supplementary information (ESI).

Fig. 1. ¹H NMR spectrum of (a) H₂L and (b) [ZnL] in DMSO-d₆.

The fluorescence quantum yield was determined taking fluorescein as a reference with known quantum yield (ϕ_R = 0.79 in 0.1 *M* NaOH). The experimental sample and reference were excited at same wavelength, maintaining almost same absorbance in the UV spectra. Area of the fluorescence spectra were measured using the software available in the instrument and the quantum yield was calculated by using the following formula:

$$\phi_{S} \neq R = \begin{bmatrix} A_{S} \\ A_{R} \end{bmatrix} \times \begin{bmatrix} (Abs)_{R} \\ (Abs)_{S} \end{bmatrix} \times \begin{bmatrix} \eta_{S}^{2} \\ \eta_{R}^{2} \end{bmatrix}$$

where, ϕ_S and ϕ_R are the fluorescence quantum yield of the samples and reference. A_S and A_R are the areas under the emission spectra of the sample and reference respectively. $(Abs)_R$, $(Abs)_S$ are the absorbance of reference and sample at the excitation wave length. η_S^2 , η_R^2 are the refractive index of the solvent used for the sample and the reference.

Theoretical calculation

DFT/B3LYP protocol was adopted using Gaussian 09 software to optimize the structures of H_2L and $[ZnL]^{26,27}$. 6-311G basis set was used for C, H, N, and O while LanL2DZ basis set was designated as effective core potential for Zn. The optimization was established by the calculation of vibrational frequency with local minima which only generated positive Eigen values. UV-Vis spectral transitions were calculated by time-dependent density functional theory (TD-DFT)

method in acetonitrile solution using conductor-like polarizable continuum model (CPCM)^{28,29}. GAUSSSUM was used for the calculation of the fractional contributions of various groups to each molecular function³⁰.

Results and discussion

Synthesis and formulation

6,6'-((1*Z*,1'*Z*)-(((Propane-1,3-diylbis(oxy))bis(2,1phenylene))bis(azanylylidene))bis-(methanylylidene))bis(2ethoxyphenol) (**H**₂**L**) is used (Scheme 1) in this work. The ¹H NMR spectrum shows phenolic-OH signal as singlet at 14.20 ppm and imine-H appears at 8.93 ppm (singlet); other characteristic signals are δ (-<u>CH</u>₂-CH₂-<u>CH</u>₂-), 4.28; δ (-O<u>CH</u>₂-CH₃), 4.04; δ (-CH₂-<u>CH</u>₂-CH₂-), 2.24; δ (-OCH₂-<u>CH₃), 1.31</u> ppm and other aromatic-Hs appear at 6.82–7.44 ppm (Fig. 1). Mass ion peak of **H**₂**L** appears at 555.27 which corresponds to calculated mass of (**H**₂**L** + H)⁺ (ESI[†], Fig. S2). The IR spectrum shows v(C=N) at 1619 cm⁻¹ and v(phenolic-OH) at 3370 cm⁻¹ (ESI[†], Fig. S3).

UV-Vis and fluorescence spectroscopic studies

The UV-Vis absorption spectrum of the probe, H_2L in 9:1 (v/v) CH_3CN/H_2O (HEPES buffer, pH 7.4) shows absorption band at 340 nm which may due to and π - π * transition. Upon addition of Zn^{2+} to H_2L solution the absorbance at 340 nm decreases and a new band appears at 402 nm along with two isobestic points at 323 and 380 nm until 1:1 stoichiometry is reached (Fig. 2). The above spectral change indicates

Fig. 2. Absorption spectral change of the probe, H₂L (50 μ M) upon gradual addition of Zn²⁺ ion (0–50 μ M) in 9:1 CH₃CN/H₂O v/v (10 μ M HEPES buffer, pH 7.4).

that there may be formation of coordination complex of H_2L with Zn^{2+} ion and the change in absorbance may be due to intra-ligand-charge transfer (ILCT) transition.

The free probe, **H**₂**L** is non-emissive (λ_{ex} , 400 nm). Fluorescence spectra of **H**₂**L** have been recorded in presence of different cations (Cr³⁺, Fe³⁺, Ni²⁺, Cd²⁺, Hg²⁺, K⁺, Co²⁺, Cu²⁺, Pd²⁺, Mn²⁺, Mg²⁺, Al³⁺, Zn²⁺, Pb²⁺, Na⁺, Ca²⁺ and Ba²⁺) in 9:1 (v/v) CH₃CN/H₂O (HEPES buffer, pH 7.4) (Fig. 3). No significant fluorescence spectral change of the probe, **H**₂**L** is

Fig. 3. Fluorescence spectra of the probe, H_2L (50 μ M) upon gradual addition of different metal ions (50 μ M) in 9:1 CH₃CN/H₂O v/v (10 mM HEPES buffer, pH 7.4), λ_{ex} 400 nm.

Fig. 4. Emission spectral change of the probe, H₂L (50 μM) upon gradual addition of Zn²⁺ ion (50 μM) in 9:1 CH₃CN/H₂O v/v (10 mM HEPES buffer, pH 7.4), λ_{ex} 400 nm; inset: vial images in absence and presence of Zn²⁺ ions under UV chamber (λ, 365 nm).

observed except Zn²⁺ ion. Upon gradual addition of Zn²⁺ ion into the **H**₂**L** solution emission intensity at 556 nm increases continuously (~203 times enhancement with respect to free probe) till probe:metal stoichiometry reached to 1:1 (Fig. 4).

The emission intensity at 556 nm increases and the guantum yield is also enhanced by ~27 fold compared to free probe ($\varphi_{[H_2L]}$ = 0.0009 and $\varphi_{[ZnL]}$ = 0.024). The limit of detection (LOD) for Zn²⁺ ion is 15.5 nM, calculated by 3 σ /m method which is admirable than that of other previously reported Zn²⁺ ion sensor (ESI[†], Fig. S6 and Table S1). [($F_{max} - F_0$)/($F - F_0$)/($F_{max} - F_0$)/(F_0)/(F F_0] vs 1/[Zn²⁺], Benesi-Hildebrand equation has been used to calculate the binding constant between H_2L and Zn^{2+} ion and its value is 4.3×10^4 M⁻¹ (ESI[†], Fig. S7). The variation of emission intensity of H₂L for Zn²⁺ sensing upon pH has also been studied; the probe itself is non-emissive throughout the pH range 2–12 but H_2L -Zn²⁺ shows emission in the pH range 8 to 12 (Fig. 5). The interference of various metal ions (other than Zn²⁺) in the fluorescence of Zn²⁺ complex has also been studied in presence of other sixteen metal ions which shows significant fluorescence sensitivity of H₂L towards Zn²⁺ in which other ions co-exits (Fig. 6). A small interference is observed in presence of Fe³⁺ and Cu²⁺ ion due to paramagnetic quenching effect.

In order to clarify the nature of the binding mode and stoichiometry of H_2L to Zn^{2+} , the ¹H NMR spectrum of H_2L

Fig. 5. Fluorescence intensity at different pH of the probe H₂L (20 μ M) in the absence and presence of Zn²⁺ (20 μ M) in 9:1 CH₃CN/H₂O mixture, λ_{ex} , 400 nm.

has been investigated in absence and in presence of Zn²⁺ ion in DMSO-d₆ (Fig. 1). The ¹H NMR spectrum of [ZnL] shows the removal of singlet signal at 14.20 ppm corresponds to δ (phenolic-OH) from H₂L and the imine proton signal δ (H-C=N) has been shifted to upfield from 8.93 to 8.90 ppm. In the free probe, H₂L the aromatic protons were at 6.82–7.44 ppm and upon complexation with Zn²⁺, these protons are at 6.71–7.38 ppm. The ¹H NMR signal movement favours the chemical interaction of Zn²⁺ with H₂L (Scheme 2). Job's plot for the reaction between H_2L and Zn^{2+} in CH_3CN -water (9:1, v/v) also supports the 1:1 complex formation (ESI^{\dagger}, Fig. S8). ESI-MS spectrum of H₂L-Zn²⁺ complex was appeared at 617.22 which corresponds to $ZnL + H^+$ ion (*m/z* Calcd. 617.15) and a base peak at 639.20 indicates ZnL + Na⁺ ion (m/z Calcd. 639.14) which also proves the formation of 1:1 complex (ESI[†], Fig. S4). The average lifetime of [ZnL] complex (0.766 ns) is increased than that of the free probe, H₂L

Fig. 6. Interference of metal ions on Zn²⁺ sensitivity in 9:1 CH₃CN/H₂O mixture.

Scheme 2. Proposed sensing mechanism of H_2L with Zn^{2+} .

(t_{av} , 0.656 ns) (ESI[†], Fig. S9) which may due to the metalligand orbital mixing of delocalised 3d π orbital of Zn²⁺ and π^* of H₂L in the excited state.

Density functional theory calculation

Density Functional Theory (DFT) calculations are taken by B3LYP/6-311G method and basis set in the Gaussian 09 software for optimization of the probe, H₂L and its zinc complex (ESI[†], Fig. S10). Some frontier molecular orbitals with energy of H_2L and [ZnL] complex are also listed (ESI[†], Figs. S11 and S12). The band gap of HOMO and LUMO of the probe H₂L and ZnL are shown in Fig. 7. The HOMO-LUMO energy gap is found to be 4.00 eV and 2.51 eV for H₂L and [ZnL] complex respectively which indicates decrease in band gap upon complexation. By using the time dependent density functional theory (TD-DFT) with CPCM method (in CH₃CN medium), the ground state electronic spectra both for H_2L and [ZnL] complexes were calculated. For the probe H₂L, the absorption a maximum at 340 nm is mainly due to HOMO- $1 \rightarrow LUMO+1$ transition (ESI[†], Table S2). For [ZnL] complex the transition from HOMO→LUMO+1 and HOMO-3→LUMO have contributions mainly due to the absorption bands at 402 and 340 nm respectively (ESI[†], Table S3). The absorption wavelength found from DFT calculations are well matched

Fig. 7. HOMO-LUMO band gap of H₂L and [ZnL] complex.

with the peaks obtained experimentally and support the red shifting absorption upon complexation with Zn^{2+} ion.

Conclusion

We have synthesized and characterized a Schiff base, 6,6'-((1Z,1'Z)-(((propane-1,3-diylbis(oxy))bis(2,1-phenylene))bis(azanylylidene))bis-(methanylylidene))bis(2ethoxyphenol), (**H**₂**L**) by using condensation method (2,2'-(propane-1,2-diylbis(oxy))dianiline with 3-ethoxy-2-hydroxybenzaldehyde). Zn²⁺ has been selected by probe **H**₂**L** spectrophotometrically via Chelation Enhanced Fluorescence (CHEF) with LOD, 15.5 nM in CH₃CN/H₂O (v/v 9:1, HEPES buffer, pH 7.4). A high intense greenish yellow emission is observed at 556 nm wavelength. So, from the above discussed observation we can conclude that the synthesized probe is highly selective for Zn²⁺ ion with very low limit of detection.

Acknowledgement

For providing financial support from the Council of Scientific and Industrial Research (CSIR, Sanction no. 01(2894)/ 09/EMR-II), New Delhi, India is thankfully acknowledged. One of our co-authors (SD) is also grateful to Council of Scientific and Industrial Research, Govt. of India for providing CSIRresearch fellowship. CS thanks RUSA 2.0 for financial help.

References

- Z. Xu, J. Yoon and D. R. Spring, *Chem. Soc. Rev.*, 2010, **39**, 1996.
- 2. B. L. Vallee and K. H. Falchuk, *Physiol. Rev.*, 1993, **73**, 79.
- 3. J. M. Berg and Y. Shi, *Science*, 1996, **271**, 1081.
- 4. D. T. Quang and J. S. Kim, Chem. Rev., 2010, 110, 6280.
- X. Chen, T. Pradhan, F. Wang, J. S. Kim and J. Yoon, *Chem. Rev.*, 2012, **112**, 1910.
- 6. X. Xie and T. G. Smart, Nature, 1991, 349, 521.
- 7. P. Jiang and Z. Guo, Coord. Chem. Rev., 2004, 248, 205.
- H. Y. Lin, P. Y. Cheng, C. F. Wan and A. T. Wu, *Analyst*, 2012, 137, 4415.
- R. Parkesh, T. C. Lee, T. Gunnlaugsson, Org. Biomol. Chem., 2007, 5, 310.
- M. S. Park, K. M. K. Swamy, Y. J. Lee, H. N. Lee, Y. J. Jang, Y. H. Moon and J. Yoon, *Tetrahedron Lett.*, 2006, 47, 8129.
- A. I. Bush, W. H. Pettingell, G. Malthaup, M. D. Paradis, J. P. Vonsattel, J. F. Gusella, K. Beyreuther, C. L. Masters and R. E. Tanzi, *Science*, 1994, **265**, 1464.
- J. Y. Koh, S. W. Suh, B. J. Gwag, Y. Y. He, C. Y. Hsu and D. W. Choi, *Science*, 1996, **272**, 1013.

Dev et al.: An ortho-hydroxy-arylimine based probe: Fluorescence sensitivity towards Zn²⁺ ion

- 13. C. J. Frederickson, M. D. Hernandez and J. F. McGinty, *Brain Res.*, 1989, **480**, 317.
- U. S. Environmental Protection Agency. Risk Assessment, Management and Communication of Drinking Water Contamination; US EPA 625/4-89/024, EPA: Washington, DC,1989.
- 15. T. Tulchinsky, MD, MPH, Public Health Reviews, 2010, **32**, 243.
- 16. A. Baran, Pol. J. Environ. Stud., 2013, 22, 77.
- A. P. S. Gonzales, M. A. Firmino, C. S. Nomura, F. R. P. Rocha, P. V. Oliveira and I. Gaubeur, *Anal. Chim. Acta*, 2009, 636, 198.
- C. Shi, S. Xie and J. Jia, J. Autom. Methods Manage. Chem., 2008, 2008, 453429.
- 19. Y. Liu, P. Liang and L. Guo, *Talanta*, 2005, 68, 25.
- 20. J. Zhanga, B. Zhaoa, C. Lia, X. Zhub and R. Qiao, Sens. Actuators B, 2014, **196**, 117.
- 21. C. Chen, D. Liao, C. Wan and A. Wu, *Analyst*, 2013, **138**, 2527.
- 22. Y. Choi, G. Park, Y. Na, H. Jo, S. Lee, G. You and C. Kim, Sens. Actuators B, 2014, **194**, 343.
- A. Kumar, A. Kumar and D. Pandey, *Dalton Trans.*, 2016, 45, 8475.
- 24. K. Aich, S. Goswami, S. Das and C. D. Mukhopadhyay, RSC Adv., 2015, 5, 31189.
- 25. B. S. Furniss, A. J. Hannaford, P. W. G. Smith and A. R.

Tatchell, "Vogel's Text Book of Practical Organic Chemistry", 5th ed., John Wiley & Sons, Inc., New York, 1989.

- 26. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery (Jr.), J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision D.01, Gaussian Inc, Wallingford, CT, 2009.
- 27. A. D. Becke, J. Chem. Phys., 1993, 98, 5648.
- M. Cossi and V. Barone, J. Chem. Phys., 2001, 115, 4708.
- M. Cossi, N. Rega, G. Scalmani and V. Barone, J. Comput. Chem., 2003, 24, 669.
- N. M. O'Boyle, A. L. Tenderholt and K. M. Langner, J. Comput. Chem., 2008, 29, 839.